首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2368篇
  免费   226篇
  国内免费   72篇
  2023年   48篇
  2022年   32篇
  2021年   85篇
  2020年   85篇
  2019年   102篇
  2018年   78篇
  2017年   80篇
  2016年   86篇
  2015年   84篇
  2014年   110篇
  2013年   174篇
  2012年   77篇
  2011年   84篇
  2010年   78篇
  2009年   92篇
  2008年   129篇
  2007年   126篇
  2006年   95篇
  2005年   86篇
  2004年   82篇
  2003年   50篇
  2002年   46篇
  2001年   52篇
  2000年   40篇
  1999年   47篇
  1998年   33篇
  1997年   37篇
  1996年   32篇
  1995年   34篇
  1994年   35篇
  1993年   21篇
  1992年   33篇
  1991年   37篇
  1990年   32篇
  1989年   24篇
  1988年   26篇
  1987年   14篇
  1986年   27篇
  1985年   22篇
  1984年   22篇
  1983年   21篇
  1982年   21篇
  1981年   30篇
  1980年   29篇
  1979年   20篇
  1978年   12篇
  1977年   17篇
  1975年   7篇
  1974年   6篇
  1973年   7篇
排序方式: 共有2666条查询结果,搜索用时 15 毫秒
31.
Mutations in proline‐rich transmembrane protein 2 (PRRT2) cause a range of episodic disorders that include paroxysmal kinesigenic dyskinesia and benign familial infantile epilepsy. Mutations are generally loss of function and include the c649dupC frameshifting mutation that is present in around 80% of affected individuals. To investigate how Prrt2 loss of function mutations causes disease, we performed a phenotypic investigation of a transgenic Prrt2 knockout (Prrt2 KO) mouse. We observed spontaneous paroxysmal episodes with behavioural features of both seizure and movement disorders, as well as unexplained deaths in KO and HET animals. KO mice showed spatial learning deficits in the Morris water maze, as well as gait abnormalities in the quantitative Digigait analysis; both of which may be representative of the more severe phenotypes experienced by homozygous patients. These findings extend the described phenotypes of Prrt2 mutant mice, further confirming their utility for in vivo investigation of the role of Prrt2 mutations in episodic diseases.  相似文献   
32.
From fine‐scale foraging to broad‐scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long‐distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2–28 times more strongly than tracking spring green‐up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.  相似文献   
33.
Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire‐prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer‐term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire‐prone ecosystems.  相似文献   
34.
The Qualitative Trajectory Calculus (QTC) is a qualitative spatio-temporal calculus for describing interactions between moving point objects. So far, it remained unclear whether QTC is useful for describing subtle differences, such as between the movements of different parts of a human body. We tested the applicability of QTC to detect differences in the gait patterns of children with or without Developmental Coordination Disorder (DCD). We found that using a combination of three markers (i.e. ankle, toe and trochanter), QTC can achieve a high classification accuracy (i.e. 83.3%) of classifying subjects correctly to either the DCD group or the control group.  相似文献   
35.
36.
Harvesting can have profound impacts on the ecology and evolution of marine populations. However, little is known about the strength and direction of fisheries‐induced selection acting on multiple traits in the wild. Here, we used acoustic telemetry to directly monitor individual behavior and fate in an intensively harvested species, the European lobster (Homarus gammarus, n = 100), in southern Norway. Overall, 24% of the tracked lobsters survived the two‐month harvest season within the study area. Our results indicated that local survival was not random with respect to phenotype. We found no clear support for fisheries‐induced selection acting directly on body size. However, lobsters with large crusher claws relative to their body size, typical of socially dominant individuals, appeared at higher risk of being captured in the conventional trap fishery. We also detected a fine‐scale spatial gradient in survival. After accounting for this gradient, individuals displaying larger home ranges were more likely to survive the harvest season. Finally, we found significant repeatabilities for lobster behavior on a monthly timescale, indicating that individual behavioral attributes tended to persist and may reflect personality. Our study therefore provides empirical support for the need to consider an evolutionary enlightened approach to fisheries management that considers the influence of harvest on multiple traits of target species.  相似文献   
37.
38.
European badgers (Meles meles) are group‐living mustelids implicated in the spread of bovine tuberculosis (TB) to cattle and act as a wildlife reservoir for the disease. In badgers, only a minority of individuals disperse from their natal social group. However, dispersal may be extremely important for the spread of TB, as dispersers could act as hubs for disease transmission. We monitored a population of 139 wild badgers over 7 years in a medium‐density population (1.8 individuals/km2). GPS tracking collars were applied to 80 different individuals. Of these, we identified 25 dispersers, 14 of which were wearing collars as they dispersed. This allowed us to record the process of dispersal in much greater detail than ever before. We show that dispersal is an extremely complex process, and measurements of straight‐line distance between old and new social groups can severely underestimate how far dispersers travel. Assumptions of straight‐line travel can also underestimate direct and indirect interactions and the potential for disease transmission. For example, one female disperser which eventually settled 1.5 km from her natal territory traveled 308 km and passed through 22 different territories during dispersal. Knowledge of badgers' ranging behavior during dispersal is crucial to understanding the dynamics of TB transmission, and for designing appropriate interventions, such as vaccination.  相似文献   
39.
Animal movement and dispersal are key factors in population dynamics and support complex ecosystem processes like cross‐boundary subsidies. Juvenile dispersal is an important mechanism for many species and often involves navigation in unfamiliar habitats. For species that metamorphose, such as amphibians, this transition from aquatic to terrestrial environments involves the growth and use of new morphological traits (e.g., legs). These traits strongly impact the fundamental ability of an organism to move in novel landscapes, but innate behaviors can regulate choices that result in the realized movements expressed. By assessing the integrative role of morphology and behavior, we can improve our understanding of juvenile movement, particularly in understudied organisms like amphibians. We assessed the roles of morphological (snout‐vent length and relative leg length) and performance (maximal jump distance) traits in shaping the free movement paths, measured through fluorescent powder tracking, in three anuran species, Pacific treefrog (Hyliola regilla), Western toad (Anaxyrus boreas), and Cascades frog (Rana cascadae). We standardized the measurement of these traits to compare the relative role of species' innate differences versus physical traits in shaping movement. Innate differences, captured by species identity, were the most significant factor influencing movement paths via total movement distance and path sinuosity. Relative leg length was an important contributor but significantly interacted with species identity. Maximal jump performance, which was significantly predicted by morphological traits, was not an important factor in movement behavior relative to species identity. The importance of species identity and associated behavioral differences in realized movement provide evidence for inherent species differences being central to the dispersal and movement of these species. This behavior may stem from niche partitioning of these sympatric species, yet it also calls into question assumptions generalizing anuran movement behavior. These species‐level effects are important in framing differences as past research is applied in management planning.  相似文献   
40.
Animal movement can mediate the ecological consequences of fragmentation; however, barriers such as fences, roads, and railways are becoming a pervasive threat to wildlife. Pronghorn (Antilocapra americana) habitat in western North America has been fragmented by roads, railways, and fences. Although pronghorn are sensitive to barriers, neither the relative permeability of different barriers to crossing nor their influence on space use have been quantified. We used a large global positioning system (GPS)-collar dataset of pronghorn (n = 1,010 animal-years) in Wyoming, USA, to first quantify the likelihood that pronghorn cross each of 5 different anthropogenic barriers, including fences, county roads, railroads, state highways, and interstate highways (i.e., interstates). Next, we assessed how each barrier influenced pronghorn space use during the winter as indexed by the area occupied, and daily displacement relative to the density of barriers on an individual's winter range. The semi-permeability of the 5 barriers varied substantially, with the interstate being the most severe barrier to pronghorn movement. Pronghorn were >300 times less likely to cross interstates compared to state highways. Although pronghorn space use was rarely influenced by barriers within individual core winter ranges, pronghorn space use was constrained by barriers on the buffered periphery of individual winter ranges. Despite their different permeability to movement, the density of fences and combined interstates and railroads had similarly negative effects on pronghorn space use. Our results illustrate that the degree to which pronghorn avoid crossing barriers may scale up to affect access to habitat. Additionally, our results indicate that the effects of barriers on habitat access are not proportional to their permeability. Our results add to a growing consensus that effective management of mobile species depends on understanding how different kinds of semi-permeable barriers influence access and use of habitats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号